24 research outputs found

    Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of continuous seismic records

    No full text
    International audienceWe analyse daily cross-correlation computed from continuous records by permanent stations operating in vicinity of the Klyuchevskoy group of volcanoes (Kamchatka). Seismic waves generated by volcanic tremors are clearly seen on the cross-correlations between some pairs of stations as strong signals at frequencies between 0.2 and 2 Hz and with traveltimes typically shorter than those corresponding to interstation propagation. First, we develop a 2-D source-scanning algorithm based on summation of the envelops of cross-correlations to detect seismic tremors and to determine locations from which the strong seismic energy is continuously emitted. In an alternative approach, we explore the distinctive character of the cross-correlation waveforms corresponding to tremors emitted by different volcanoes and develop a phase-matching method for detecting volcanic tremors. Application of these methods allows us to detect and to distinguish tremors generated by the Klyuchevskoy and the Tolbachik, volcanoes and to monitor evolution of their intensity in time

    Recurrence of Deep Long-Period Earthquakes beneath the Klyuchevskoi Volcano Group, Kamchatka

    No full text
    International audienceAbstract—Long-period earthquakes and tremors, on a par with volcano-tectonic earthquakes, are one of two main classes of volcano-seismic activity. It is believed that long-period volcanic seismicity is associated with pressure fluctuations in the magmatic and hydrothermal systems beneath volcanoes and can therefore be used as a precursor of the impending eruptions. At the same time, the physical mechanism of the long-period seismicity is still not fully understood. In this work, we have studied the long-period earthquakes that occur at the crust-mantle boundary beneath the Klyuchevskoi volcanic group in Kamchatka in order to establish their recurrence law—the relationship between the magnitude and frequency of occurrence of the events. In the region under study, the earthquakes pertaining to this type are most numerous and characterize the state of the deep magma reservoir located at the crust-mantle boundary. The changes in the seismic regime in this part of the magmatic system can be one of the early precursors of eruptions. For a more thorough characterization of the frequency-magnitude relationship of the discussed events, we compiled a new catalog of the deep long-period earthquakes based on the matched-filter processing of continuous seismograms recorded by the network stations of the Kamchatka Branch of the Geophysical Survey of the Russian Academy of Sciences in 2011-2012. For these earthquakes, we also used a magnitude determination method that provides the estimates close to the moment magnitude scale. The analysis of the obtained catalog containing more than 40 000 events shows that the frequency-magnitude relationships of the earthquakes markedly deviate from the Gutenberg-Richter power-law distribution, probably testifying to the seismicity mechanism and peculiarities of the sources that differ from the common tectonic earthquakes. It is shown that the magnitude distribution of the deep long-period earthquakes is, rather, described by the distributions with characteristic mean values such as the normal or gamma distribution

    Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer

    No full text
    International audienceVolcanic long-period earthquakes are attributed to pressure fluctuations that result from unsteady mass transport in the plumbing system of volcanoes. Whereas most of the long-period seismicity is located close to the surface, the volcanic deep long-period earthquakes that occur in the lower crust and uppermost mantle reflect the activity in the deep parts of magmatic systems. Here, we present observations of long-period earthquakes that occurred in 2011-2012 within the Klyuchevskoy volcano group in Kamchatka, Russia. We show two distinct groups of long-period sources: events that occurred just below the active volcanoes, and deep long-period events at depths of ~30 km in the vicinity of a deep magmatic reservoir. We report systematic increases of the long-period seismicity levels prior to volcanic eruptions with the initial activation of the deep long-period sources that reflects pressurization of the deep reservoir and consequent transfer of the activity towards the surface. The relatively fast migration of the long-period activity suggests that a hydraulic connection is maintained between deep and shallow magmatic reservoirs. The reported observations provide evidence for the pre-eruptive reload of the shallow magmatic reservoirs from depth, and suggest that the deep long-period earthquakes could be used as a reliable early precursor of eruptions
    corecore